Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
31st ACM Web Conference, WWW 2022 ; : 1115-1127, 2022.
Article in English | Scopus | ID: covidwho-2029542

ABSTRACT

Coronavirus disease 2019 (COVID-19) has gained utmost attention in the current time from academic research and industrial practices because it continues to rage in many countries. Pharmacophore models exploit molecule topological similarity as well as functional compound similarity so that they can be reliable via the application of the concept of bioisosterism. In this work, we analyze the targets for coronavirus protein and the structure of RNA virus variation, thereby complete the safety and pharmacodynamic action evaluation of small-molecule anti-coronavirus oral drugs. Common pharmacophore identifications could be converted into subgraph querying problems, due to chemical structures can also be converted to graphs, which is a knotty problem pressing for a solution. We adopt simplified representation pharmacophore graphs by reducing complete molecular structures to s to detect isomorphic topological patterns and further to improve the substructure retrieval efficiency. Our threefold architecture subgraph isomorphism-based method retrieves query subgraphs over large graphs. First, by means of extracting a sequence of subgraphs to be matched and then comparing the number of vertex and edge between the potential isomorphic subgraphs and the query graph, we lower the computational scaling markedly. Afterwards, the directed vertex and edge matrix recording vertex and edge positional relation, directional relation and distance relation has been created. Then, on the basis of permutation theorem, we calculate the row sum of vertex and edge adjacency matrix of query graph and potential sample. Finally, according to equinumerosity theorem, we check the eigenvalues of the vertex and edge adjacency matrices of the two graphs are equinumerous. The topological distance could be calculated based on the graph isomorphism and the subgraph isomorphism can be implemented after the combination of the subgraph. The proposed quantitative structure-function relationships (QSFR) approach can be effectively applied for pharmacophoric patterns identification. The framework of new drug development for covid-19 has been established based on this triangle. © 2022 ACM.

2.
IUBMB Life ; 73(4): 670-675, 2021 04.
Article in English | MEDLINE | ID: covidwho-1144243

ABSTRACT

Mutations in the novel coronavirus SARS-CoV2 are the major concern as they might lead to drug/vaccine resistance. In the host cell, the virus largely depends on the main protease (Mpro ) to regulate infection hence it is one of the most attractive targets for inhibitor design. However, >19,000 mutations in the Mpro have already been reported. The mutations encompassing 282 amino acid positions and these "hotspots" might change the Mpro structure, activity and potentially delay therapeutic strategies targeting Mpro . Thus, here we identified 24 mutational "coldspots" where mutations have not been observed. We compared the structure-function relationship of these coldspots with several SARS-CoV2 Mpro X-ray crystal structures. We found that three coldspot residues (Leu141, Phe185, and Gln192) help to form the active site, while seven (Gly2, Arg4, Tyr126, Lys137, Leu141, Leu286, and Leu287) contribute to dimer formation that is required for Mpro activity. The surface of the dimer interface is more resistant to mutations compared to the active site. Interestingly, most of the coldspots are found in three clusters and forms conserved patterns when compared with other coronaviruses. Importantly, several conserved coldspots are available on the surface of the active site and at the dimer interface for targeting. The identification and short list of these coldspots offers a new perspective to target the SARS-CoV2 Mpro while avoiding mutation-based drug resistance.


Subject(s)
COVID-19/metabolism , Coronavirus 3C Proteases/genetics , Mutation , SARS-CoV-2/metabolism , Antiviral Agents/pharmacology , COVID-19/virology , Coronavirus 3C Proteases/chemistry , Crystallography, X-Ray , Humans , Protein Conformation , SARS-CoV-2/drug effects
3.
J Biol Chem ; 296: 100135, 2021.
Article in English | MEDLINE | ID: covidwho-955836

ABSTRACT

The ongoing COVID-19 pandemic has already caused over a million deaths worldwide, and this death toll will be much higher before effective treatments and vaccines are available. The causative agent of the disease, the coronavirus SARS-CoV-2, shows important similarities with the previously emerged SARS-CoV-1, but also striking differences. First, SARS-CoV-2 possesses a significantly higher transmission rate and infectivity than SARS-CoV-1 and has infected in a few months over 60 million people. Moreover, COVID-19 has a systemic character, as in addition to the lungs, it also affects the heart, liver, and kidneys among other organs of the patients and causes frequent thrombotic and neurological complications. In fact, the term "viral sepsis" has been recently coined to describe the clinical observations. Here I review current structure-function information on the viral spike proteins and the membrane fusion process to provide plausible explanations for these observations. I hypothesize that several membrane-associated serine proteinases (MASPs), in synergy with or in place of TMPRSS2, contribute to activate the SARS-CoV-2 spike protein. Relative concentrations of the attachment receptor, ACE2, MASPs, their endogenous inhibitors (the Kunitz-type transmembrane inhibitors, HAI-1/SPINT1 and HAI-2/SPINT2, as well as major circulating serpins) would determine the infection rate of host cells. The exclusive or predominant expression of major MASPs in specific human organs suggests a direct role of these proteinases in e.g., heart infection and myocardial injury, liver dysfunction, kidney damage, as well as neurological complications. Thorough consideration of these factors could have a positive impact on the control of the current COVID-19 pandemic.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/epidemiology , Pandemics , SARS-CoV-2/genetics , Serine Endopeptidases/genetics , Spike Glycoprotein, Coronavirus/genetics , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/pathology , COVID-19/transmission , COVID-19/virology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Kidney/metabolism , Kidney/pathology , Kidney/virology , Liver/metabolism , Liver/pathology , Liver/virology , Membrane Fusion/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Myocardium/metabolism , Myocardium/pathology , Proteinase Inhibitory Proteins, Secretory/genetics , Proteinase Inhibitory Proteins, Secretory/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2/growth & development , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Signal Transduction , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL